

Industrielle Biotechnologie Dozent: Dr.-Ing. Frank Eiden

Entwicklung einer BioEthanol-Fabrik

Studenten:

Hendrik Beckert, Michael Bornschein, Marion Böing, Anette Hettwer, Alex Kotlovski, Sebastian Hönes, Miriam Krusch, Benjamin Sperlich

V

Inhaltsverzeichnis

- Zielsetzung/Motivation
- Gruppe1 Materialvorbereitung (Prozess
- Gruppe2 Fermentation (Prozess)(unter Verwendung einer Abgasanalytik zur Steuerung)
- Gruppe3 Downstream-Processing Aufarbeitung

Zielsetzung

- Profitabilität der BioEtOH-Fabrik
- Innovativer Fermentationsprozess
- Produktionsvolumen von 7.920 t/a
- Ökoeffizienter Prozess (Stoffkreisläufe)

<u>Materialvorbereitung</u>

Ausgangsmaterial

Zuckerrohr

Getreide

ZUCKERRÜBE

5

Die Zuckerrübe

Zuckergehalt: ca. 18,5%

Preis: ~ 26 €t

Saison: ab September ca. 3-4 Monate

Vorteile:

Schnitzel nach Extraktion + Vinasse nach Fermentation

→ Futtermittel + Düngemittel

Nachteile: Saisonzeit

Zuckerrübenverwaltung

- Nach Absprache mit Fermentation:
 - → 12 t Zucker täglich benötigt.
 - **⇒** 365 Tage = 4400 t/a
 - ≥ 24000 t Zuckerrüben nötig (,,Saison")
- > Jährlich Kosten für Zuckerrüben:
 - **⇒** 624.000 €

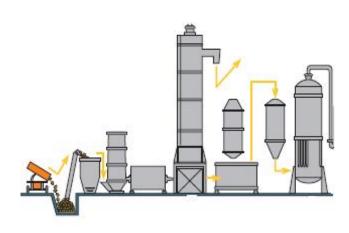
7

Größe: 400ha ->■

Anlieferung

Soll: 200 Tonnen pro Tag

→5 Lkw-Lieferungen à 40t pro Tag →Entfernung wichtig (bei 30km → ca.120€pro Lieferung)


→ 72.000**€**Saison

9

Der Aufbereitungsprozess

- -Reinigung der Rüben
- -Zerschneiden/Zerhäckseln
- -Zuckerextraktion
- -Reinigung des Rohsaftes
- -Eindicken

Die Reinigung

Mechanische Reinigung:

z.B. durchTrockenschmutzabscheider

Wäsche der Rüben in Waschtrommel!

NICHT wie rechts im BILD!

Waschtrommel reduziert den Wasserverbruach!

Herkömmliches Waschverfahren mit normen Wasserverbrauch!!!!

11

Zerkleiern / Zerhäckseln

Trommelschneidmaschine

Sehr leistungsstark → bis zu 10.000 t/d!

Zerkleinerte Rübenschnitzel auf einem Förderband

Extraktion

Erhitzen der Masse im **Jet Cooker** auf bis zu 70°C.

Nach leichtem Abkühlen, Hinzugabe der Enzyme zum weiteren Aufschluss im

Extraktionsturm.

Schnitzelmasse im Extraktionsturm

Die Energie bzw. der benötigte Wasserdampf für den Jet Cooker wird aus einem späteren Prozess zurückgewonnen!

13

Reinigung des Rohsaftes

Reinigung durch Calziumhydroxid

Ca(OH)₂ kann mit CO₂ aus der Fermentation gefällt werden → Calziumcarbonat

(Verwendung des Fermenationsabgases!)

Filtrieren des Schlammes → Düngemittel


Evaporation

Evaporation des Rohsaftes

- → Zuckergehalt wird auf den für die Weiterverarbeitung im nächsten Prozessschritt optimal eingestellt
- → Der zurückgewonnene Wasserdampf wird dem Cookingprozess (Jet Cooker) zugefügt

Fließschema Materialvorbereitung

Energiebilanzen zum Fließschema "Stromverbrauch"

- Die Anlieferung und die Lagerung der Rüben sind Stromfrei.
- Eine Vorreinigung erfolgt schon während der Ernte.

17

Energiebilanzen zum Fließschema "Stromverbrauch"

- Das Rübenwaschhaus
- → 0,115 kWh/100kg Rüben
- Wasserverbrauch sehr gering, da Verwendung von Brunnenwasser

Energiebilanzen zum Fließschema "Stromverbrauch"


- Trommelschneidemaschine
- → 5,4 kWh/200t Rüben
- Ausgelegt für 10.000t/d

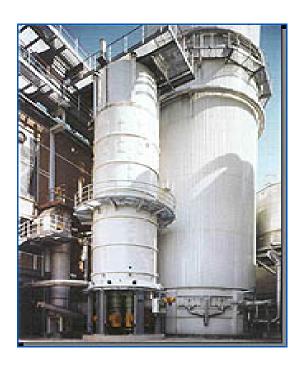
19

Energiebilanzen zum Fließschema "Stromverbrauch"

- Extraktionsturm
- ▶ →0,25 kWh/100kg Rüben

Energiebilanzen zum Fließschema "Stromverbrauch"

Saftreinigung/Verdampfungstrocknung (Evaporation)


→270 kWh/t Rüben

21


Energiebilanzen zum Fließschema "Stromverbrauch"

- Schnitzelpressen
- → 0,15kWh/100kg Rüben

Energiebilanzen zum Fließschema "Wasserverbrauch"

- ► Heutzutage wird die Zuckergewinnung ohne den Verbrauch von Frischwasser durchgeführt → Nutzung der Ressourcen.
- Trinkwasserverbrauch 25,4L/t Rüben

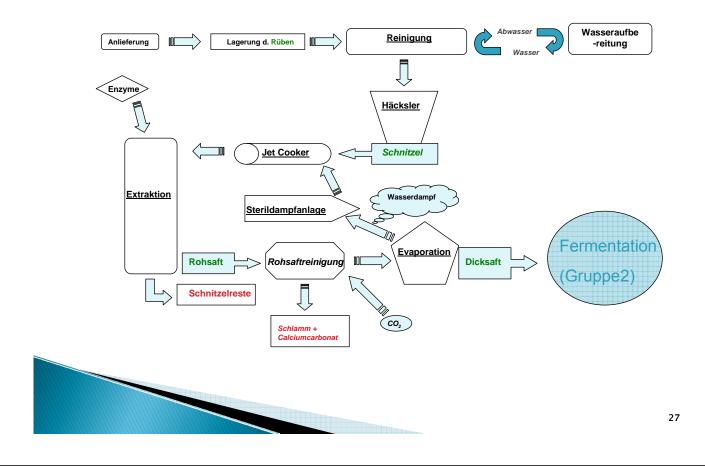
23

Energiebilanzen zum Fließschema "Wasserverbrauch"

- Abwasser Entstehung ca. 530 Liter/t , welches über eine Abwasserreinigungsanlage gereinigt wird → es fallen ca. 110 m³ pro Tag an
- Stromverbrauch der Anlage ca. 1 kWh/Kubikmeter

Gesamtverbrauch

Anlagen	Strom in kWh	Wasser / Abwasser	Kosten in €
Rübenwaschhaus	0,115 kWh / 100kg	\	3.900 €
Trommelschneidemaschine	5,4 kWh / Tag		90 €
Extraktionsturm	0,25 kWh / 100kg		8.400 €
Evaporation	270 kWh / t		907.200 €
Schnitzelpressen	0,15 kWh / 100kg		5.040 €
Abwasserreinigungsanlage	1,0 kWh / m ³	110 m³ / Tag	1.850 €
Sanitäranlagen		25,4 L / t	915 €
Gesamt:	6.617.448 kWh		927.395 €



25

Gesamtverbrauch

- Alle Werte beziehen sich auf:
- ▶ 120 Tage Produktion
- > 200 Tonnen Rüben pro Tag
- Strompreis von 0,14 € pro kWh
- Wasserpreis von 1,5 € pro Kubikmeter

Fließschema Materialvorbereitung

Der Fermentationsprozess

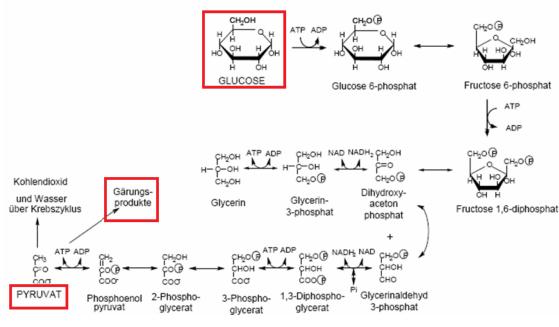
Fermentationsprozess - Gliederung

Block 1: Organismus, Stoffwechsel und weitere

Grundlagen


Block 2: Anlage, Fahrweise und CO2-Regelung

Block 3: Kosten, Ausbeute und Energieströme


Biologische Komponenten - Mikroorganismus

Molekularbiologisch selektierter Stamm

- fakultativ anaerob
- wichtigstes Substrat für die Gärung ist Zucker
- Beachtung des Crabtree-Effekts
- Wachstumstemp. 28°C
- Gärungstemp. 32°C

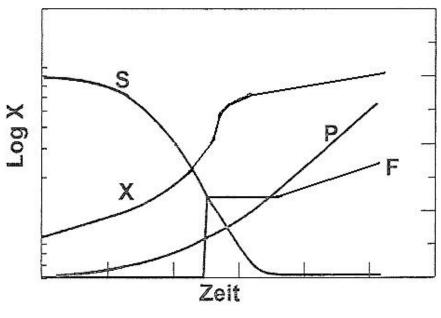
GLYCOLYSE EMBDEN-MEYERHOF-PARNAS-WEG

31

Medium

BATCH

- Glucose (2%)
- Hefeextrakt
- Malzextrakt
- Ammoniumsulfat
- Natriumglutamat
- Ammoniumdihydrogenphosphat
- Kaliumchlorid
- MagnesiumsulfatCalciumchlorid


FEED

- Glucose (10%)
- Kein Kaliumchlorid
- Kein Calciumchlorid

Fed-Batch (anaerob)

Zugabe des Feeds nach Abnahme des Substrats

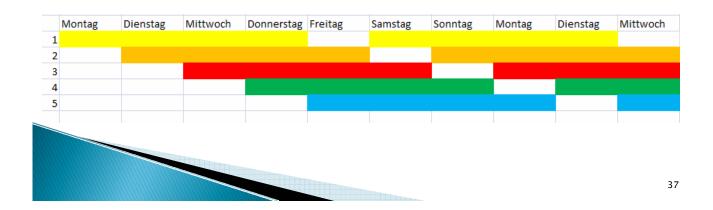
Mögliche Probleme

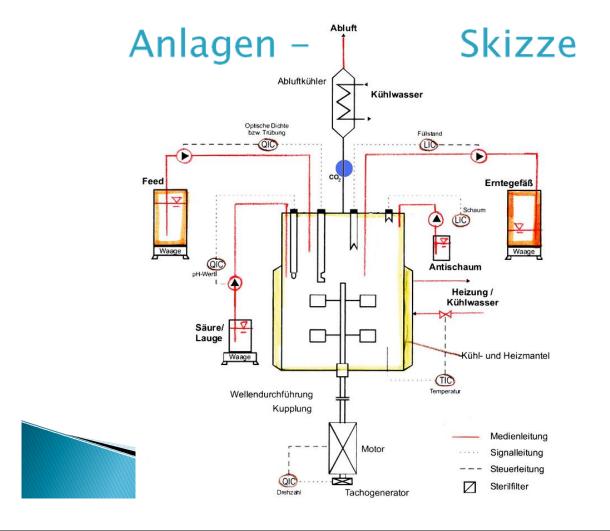
- Ethanoltoleranz
- Verstoffwechselung EtOH (Death-Phase)!!!
- Durchmischung
- Scherkräfte (Stress)
- Crabtree-Effekt

33

Crabtree-Effekt

- Grenzwert:100mg/l Glucose
- Hemmung des Wachstums durch Inhibition respiratorische Gene im MiO
- Ethanol wird aerob synthetisiert
- Für anaerobe Gärung nicht relevant


35


Anlagenkonstruktion

- Volumen: 5 Fermenter mit je 300m³
- ▶ Befüllung: 200 m³pro Fermenter
- pH, Feed, Antischaum, OD;
- CO2- Messung mit BlueSense Messgerät zur Bestimmung des EtOH- Gehaltes

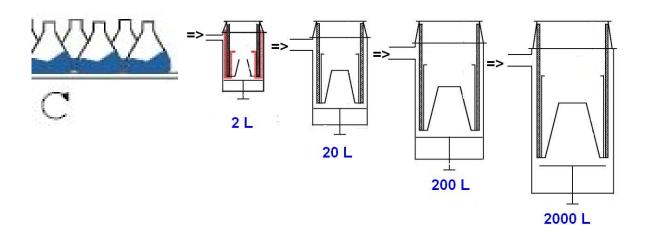
Gesamtablauf der Fermenterkette

- 5 Fermenter gleicher Bauart
- Alternierender Fermentationsstart ermöglicht dauerhafte Produktion
- Nachteil: Reinigung und Wartung an Wochenenden und Feiertagen teurer

Scale-Up

Probleme bei der Maßstabsvergrößerung:

- Verlangsamte Wärmezu- & Abführung
- Schlechtere Durchmischung
- Veränderte Misch- & Dosierzeiten
- andere Chemikalienqualitäten

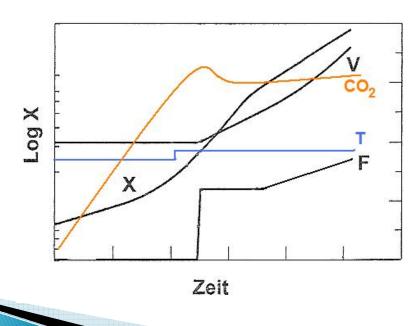

Berechnungen im Vorfeld:

- Verfügbarkeit und Preise der Chemikalienqualitäten
- Alternative Prozessschritte, besonders bei der Aufarbeitung
- Thermische Sicherheit der Reaktionen

39

Einmaliger Scale-Up

Starter-Kultur


- Animpfung aus Starter-Kultur mit 200 Litern (1:1000 Maßstab)
- Züchtung der Starter-Kultur aus 200ml Schüttelkolben
- ▶ Inokkulum Aufbewahrung bei –18°C

41

CO₂ – Regelung

- Blue-Sens-Gerät (größere Auslegung)
- ▶ Feed-Steuerung über CO₂-Konzentration

Ausbeute (Pro Fermentation)

Volumen der Fermentatonsbrühe

200.200L (Durch Starter-Kultur, Batch und Feed)

Ethanol

► Umsatz: max. 15% → 30.000 L EtOH

Hefeextrakt

Ca. 15 % Trockenmasse → 30.000 kg

43

Medium-Kosten am Tag

Stoff	Batch	Feed	Starter- Kultur	Gesamt- masse in kg	Kosten pro kg	Kosten
Glucose	2.000	10.000	0,20	12.000		
Hefeextrakt	300	300	0,60	601	Eigenproduktion	
Malzextrakt	300	300	0,60	601	6,30	3.784
Ammoniumsulfat	500	700	1,00	1.201	3,00	3.603
Natriumglutamat	500	500	1,00	1.001	5,00	5.005
Ammoniumdihyd rogenphosphat	320	190	0,64	511	7,00	3.574
Kaliumchlorid	150		0,30			1.052
Magnesiumsulfat	75	100	0,15			1.138
Calciumchlorid	10		0,02			35

Gesamtkosten: 18.192€

Kosten pro Tag

Parameter	Preis pro m³ /kWh	Kosten
Medium	90,50€	18.192€
Wasser (Fermentersterilisation, Sanitäre Anlagen, Reinigung, Labor)	1,50€	600€
Strom (Heizung, Fermenter, Kühlkreislauf)	0,14€	100€
GESAMTKOSTEN		<u>19.492€</u>

45

Sonstige Kosten

- Unterhalt eines Labors
- QM
- PR
- Personal
 - Labormitarbeiter
 - Lageristen
 - Management
 - Wartung- und Instandhaltung

Nebenprodukte

- Diacetyl
- a-Acetylmilchsäure
- a-Acetohydroxybuttersäure
- Pentandion
- Acetoin

n-Propanol

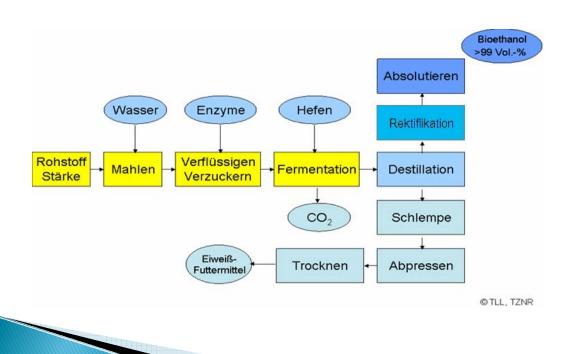
Isobutylalkohol

Isoamylalkohol

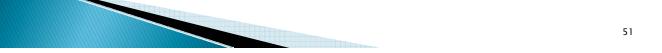
Optisch aktiver Amylalkohol

Phenylethanol

47


Downstream-Processing

Inhaltsverzeichnis:

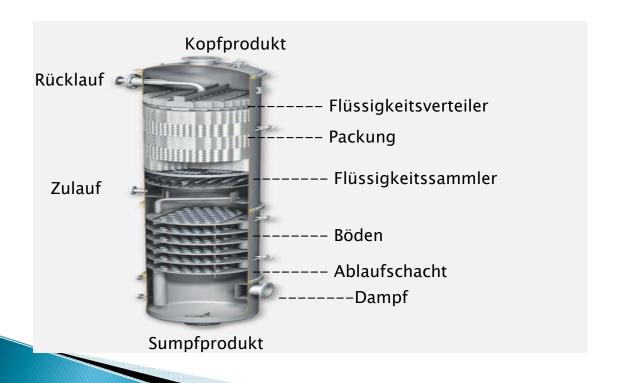

- 1. Anlage und Komponenten:
- Destillation
- Rektifikation/Absolutieren
- Weiterverarbeitung der Nebenprodukte
- 2. Stoff und Energieströme

49

- Ziel: 99,9 Gew.-% Bioethanol
- 1. Fermentation: 12-18 Gew.-% EtOH
- 2. Destillation: 40-45 Gew.-% EtOH
- 3. Rektifikation: 90 Gew.-% EtOH
- 4. Azeotrope Rektifikation: 96 Gew.-% EtOH
- 5. Absolutieren: 99,9 Gew.-% EtOH

Destillation

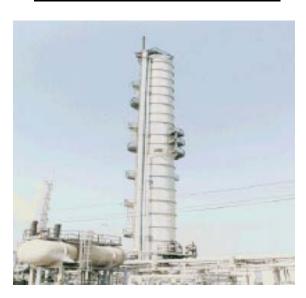
Destillation:


ist ein thermisches Trennverfahren, um ein flüssiges Gemisch verschiedener, ineinander löslicher Stoffe zu trennen.

53

Anlagekomponenten Destillation

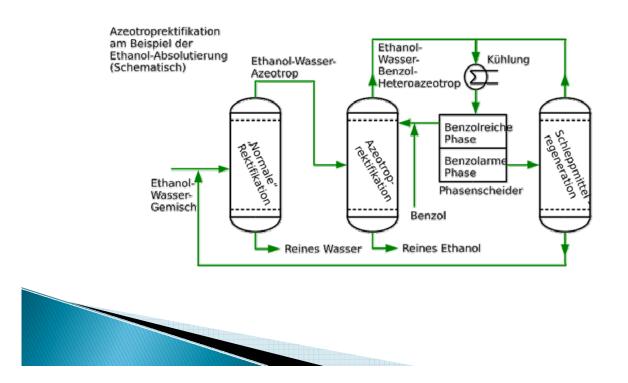
Destillationskolonne



Glockenboden

Strukturierte Packung

<u>Destillationskolonne</u>

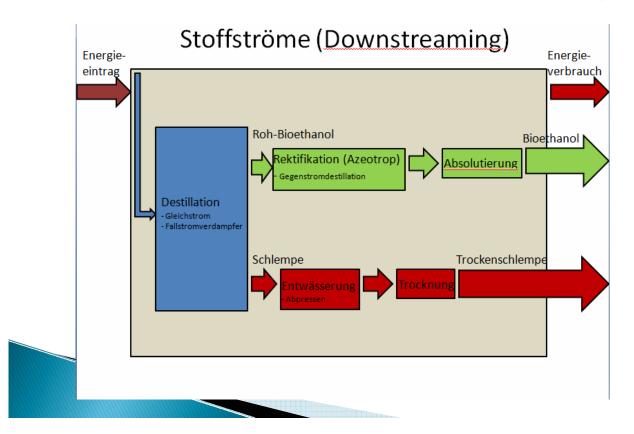


Rektifikation Absolutieren

Aufarbeitungsschritte

- Rektifikation (Gegenstromdestillation)
 - → Azeotrope Rektifikation
- Entwässerung des Ethanol/Wasser Stoffsystems auf die azeotrope Konzentration von 96 Gew. – % bei Normaldruck
- Absolutieren
- Steigerung des Reinheitsgehalts → über 99 Gew.- %

Anlagekomponenten Rektifikation


Weiterverarbeitung der Nebenprodukte

- Weiterverarbeitung der Nebenprodukte
- Abpressen der Schlempe
- ▶ Trocknen → Eiweiß Futtermittel

Schaufeltrockner

Stoffströme - Downstreaming

Stoffströme – Annahme

Edukt/Produkt-Verhältnisse:

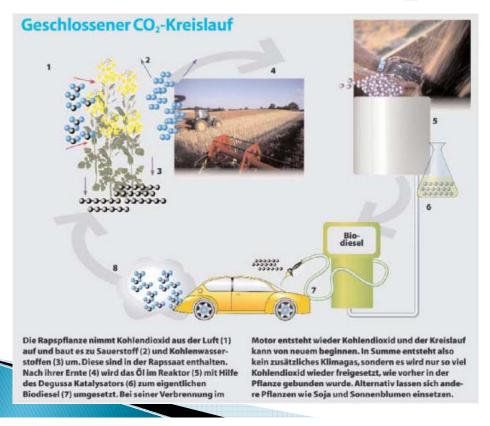
- Bioethanol: 33% → 24.000t * 0,33= 7920 t
- Schlempe: 37% → 24.000t * 0,37 = 8800 t
- \circ CO₂: 30 % \rightarrow 24.000 t * 0,30 = 7200 t

Stromverbrauch Downstreaming:

- 1/3 der Gesamtstromkosten
- Gesamtstrom: 13.764.292 kwh/Jahr

65

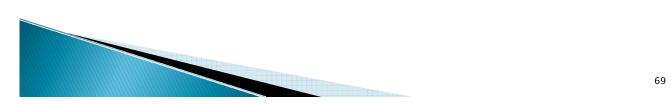
Vinasse


Vinasse gilt als hochwertiges Düngemittel oder kann, mit Rübenschnitzeln vermischt, als Futtermittel verwendet werden.

Pro Tonne Zuckerrüben fallen ca. 370 kg Vinasse an!

- ⇒ Preis: ~125 € pro t
- ⇒ 24.000t ZR/a = ca. 1.110.000 € Erlös

67


Stoffströme – CO₂

Stoffströme – Kosten Downstreaming

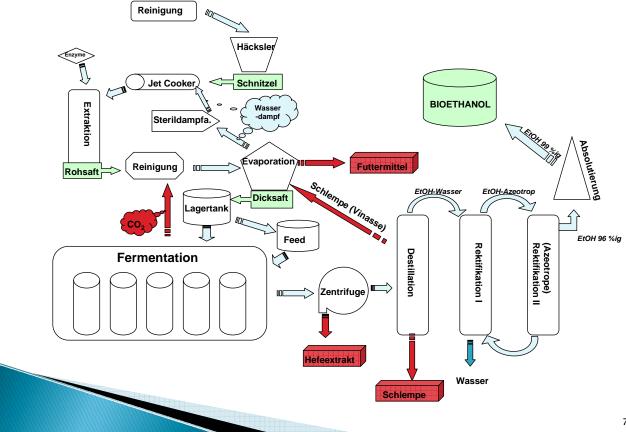
	m³/d	m³/Jahr	Einheit	Preis [€]	Preis/Jahr [€]
Wasser (Downstreaming)	13	4.693	m ³	1,50	7.039
	kwh/t	kwh/Jahr	Einheit	Preis[€]	Preis/Jahr [€]
Strom (Downstreaming)	12.570	4.588.097	kWh	0,14	642.334

▶ Kosten Downstreaming: 649.373 €

Stoffströme – Inputkosten

Kosten Gruppe 2 [€]: Kosten Gruppe 3 [€]:	7.114.58 649.37
Kosten Gruppe 2 [€]:	1.114.38
	7 444 50
Kosten Gruppe 1 [€]:	1.623.39

Herstellungskosten [€] = Inputkosten/Volumen = 9.387.348 € / 7.920.000 L = 1,19 € pro L


Stoffströme – Output

Output				Erlös	
	t/d	t/Jahr	Einheit	Preis [€]	Preis/Jahr [€]
Ethanol	21,70	7.920	t	2000	15.840.000
Tierfutter	24,33	8.880	t	125	1.110.000
CO ₂ (Abgas)	19,73	7.200	t		
Umsatz [€]					16.950.000

Gewinn [€] = Umsatz – Inputkosten = 16.950.000 € - 9.387.348 € = 7.562.652 €

71

Fließschema der Stoffströme

72

Vielen Dank für Ihre Aufmerksamkeit

