

1. Dokumentinformation

Angaben zur Modellierung von basierend auf der Diplomarbeit von Lars Blank (Quelle: Frank Eiden).

2. Angaben zur Modellierung

2.1 Organismus

C(lostridia). acetobutylicum (EG925) Wildtyp = ATCC 824 anaerob

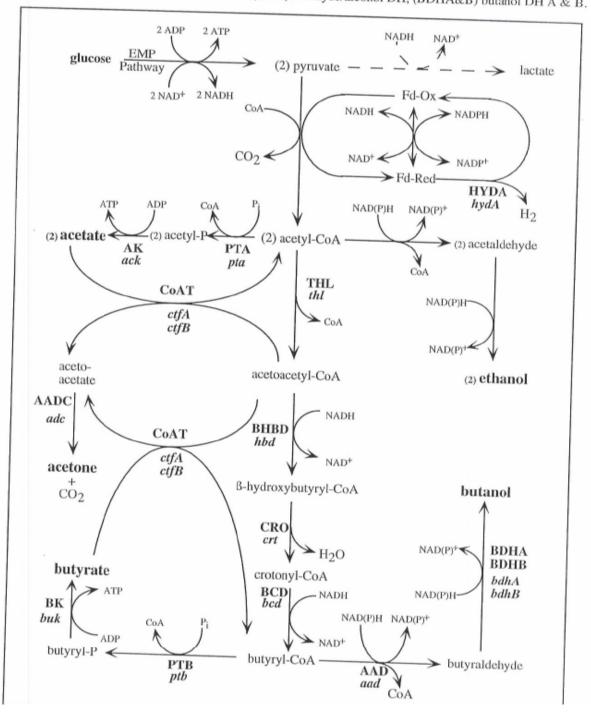
2.2 Komponenten

"Solvent" = butanol (max titer 255mM at pH5)

Enzym "alcohol/aldehyde dehydrogenase" (aad)

Substrate: Glukose, Stärke, Cellulose, Pektion

Produkte: Aceton, Acetat, Acetoin, Butanol, butyrate, Ethanol, CO2, Lactat



2.3 Reaktionen

2.3.1 Allgemein

at high AT (CoA transferase?) composition the shift from acidogenic to solventogenic phase Figure 1.1

Product formation by *C. acetobutylicum* from glucose. Enzymes for cloned genes have been labelled in bold; corresponding genes are in italics: (HYDA) hydrogenase, (PTA) phosphotransacetylase, (AK) acetate kinase, (THL) thiolase, (CoAT) acetoacetyl-CoA:acetate-butyrate:CoA transferase, (AADC) acetoacetate decarboxylase, (BHBD) β-hydroxybutyryl-CoA DH, (CRO) crotonase, (BCD) butyryl-CoA DH, (PTB) phosphotransbutyrylase, (BK) butyrate kinase, (AAD) aldehyde/alcohol DH, (BDHA&B) butanol DH A & B.

2.3.2 Acidogenic phase

cells are growing exponentially

Produkte: Wasserstoff, CO2, Acetat, Butyrate, und unter best. Bedingungen auch Lactat.

pH fällt in dieser Phase bis auf 3.8 (accumulation of carboxylic acids)

Wärmebildung

2.3.3 Solventogenic phase

stationäre Phase

Produkte: Aceton, Butanol, Ethanol, Acetoin

Substrate: Kohlenhydrate und carboxylic acids daher steigender pH

dauert solange, bis Substrat aufgebraucht oder toxische Butonal Konzentration von ca. 13

g/Ltr erreicht. Zellen bilden Sporen und Fermentation stoppt.

2.3.4 Offenen Fragen

• TODO Wodurch entsteht der Übergang von der "Acidogenic" in die "Solventogenic" Phase?

2.4 Kinetik

2.4.1 pH

Butanol Titer bei pH 5 besser als bei 4.7 und 5.5 über pH 5.8 keine Solvent Produktion

2.4.2 Sonstige

growing under low redox potential

3. Betriebsbedingungen

3.1 Temperatur

37°C

3.2 pO2

anaerob

3.3 Substrate

Glukose 80g /Ltr

3.4 Sonstige

Ethanol 10mM

3.5 Belüftung

N2 100%, 125ml/Min anfangs, später 25 ml/min bei höheren Biomassekonzentrationen

3.6 Rührer

200 rpm

3.7 Zufütterung

3.8M Glukose in der stationären Phase

4. Anlagen

2 (1.5) Liter und 5 (4) Liter

5. Ergebnisse

nach 32h Glukose aufgebraucht, dann 83mM Acetate und 86mM Butyrate, pH = 6.7 110 mM Aceton, 210 mM Butanol, 39mM Ethanol produziert Verdopplungszeit = 1.4h

Table 3.1 Effect of pH on solvent production

C. acetobutylicum pH strain	m pH		reactor antibiotic	acetone (mM)	acetate (mM)	acetoin (mM)	ethanol (mM)	butanol	butanol butyrate	lactate	acetone/	additional glucose	glucose	glucose	A600	Asso doubling
EG925(nTAAD)	- 1								(mm)	(MILNI)	putanoi	glucose	measured	calculated		time (hr)
(dearly see		7.0.T	no	146	1	2	40	213	6	1.5	0.68	VAC	440	000		
EG925(pTAAD) 4.7	4.7	2.0 T	Ü	110	63	,						323	0++	3/8	10.5	1.82
	+	_		110	25	0	39	210	2	1	0.52	ves	480	360	-	
													00.		Q.	6.1
	1	1														
EG925(pTAAD) 5.0	5.0	5.0 L	Ot.	160	00			T								
	1		207	700	200	9	47	255	00	-	0.63	4700	200			
EG925(pTAAD) 5.0 5.0	20	5 O T					T	1			200	255	060	468	10.5	1.44
	2	2.07	по	120	82	5.5	43	225	6		0.53				t	
						T		7				yes	450	406.5	10.5	1.7
	_														\dagger	
EG925(pTAAD) 55	5.5	5.01	-10	00.			T	1	1	1						
	3	70.0	5	801		2	20 1	175 3	36 8		0.57				t	
EG925/nTAADA	4	103			T	T	1					yes	401	323	13.0 1	1.64
(Augusta)	0.0	2.0.0	00	000	-	5	22	175 4	42						†	T
Data not available	lahla										2	yes	360	317.5	10.0 1.83	83
THE PARTY AND ADDRESS OF THE PARTY AND ADDRESS																

--- Data not available EG925 = ATCC 824 solR::pO1X

engineo GmbH Seite 5 / 15 www.engineo.com

Table 3.5 Control fermentations with strains ATCC 824 and EG925

acetobutylicum pH ain	Hd		reactor antibiotic	acetone (mM)	acetate (mM)	acetoin (mM)	ethanol (mM)	butanol (mM)	acetoin ethanol butanol butyrate (mM) (mM) (mM) (mM)	lactate (mM)	acetone/ butanol	acetone/ additional glucose butanol glucose measured	glucose	glucose glucose	A600	A ₆₀₀ doubling rime (hr)
3005	0															eme (m)
0760	0.0	2.0 S.0 L	по	105	!	7	27	171	7	ю	0.61	yes	460		7.1 1.63	1.63
2000															1	00:4
277	5.0	5.0 2.0 L CIt	ij	\$2	1	5	28	146	10	5	0.58	no	430		8.0 1.8	×
															3	0.4
CC 824	5.0	2.0 T	по	78	32	6	15	138	14	1	0.57	ves	375		7 5 1 75	1 25
																C#-1
CC 824	5.0	5.0 2.0 L	00	86	45	6	20	176	30	1	0.56	no	365		66 135	1 25
Doto was and Lile	-File														3	L. 60.7

--- Data not available EG925 = ATCC 824 solR::pO1X

Table 3.6 Specific formation and uptake rates for EG925 and ATCC 824 fermentations

C. acetobutylicum strain	start of solvent production after inoculation (hr)	specific glucose consumption rate (mM/(hr A ₆₀₀ unit))	specific acetone accumulation rate (mM/(hr A ₆₀₀ unit))	specific butanol accumulation rate (mM/(hr A ₆₀₀ unit))
EG925 #9	ca 14	3.62	1.09	1.83
ATCC 824 #7	ca 14	2.07	0.67	1.31

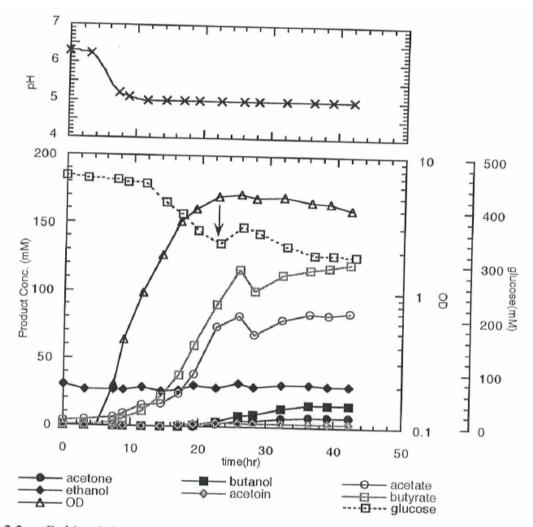


Figure 3.3 Fed-batch fermentation of EG925(pTAAD) controlled at pH 5.0. Tetracycline at a concentration of 10 μg/ml was used for the slection of the plasmid. The arrow indicates time point when glucose was added.

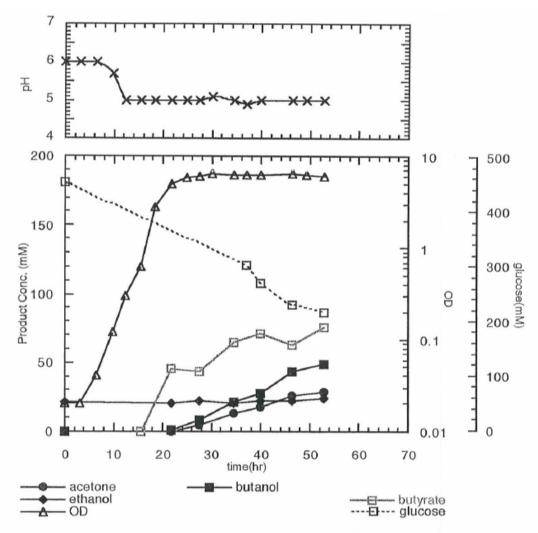


Figure 3.4 Batch fermentation of EG925(pTAAD) controlled at pH 5.0. Tetracycline at a concentration of 10 μg/ml was used for the slection of the plasmid.

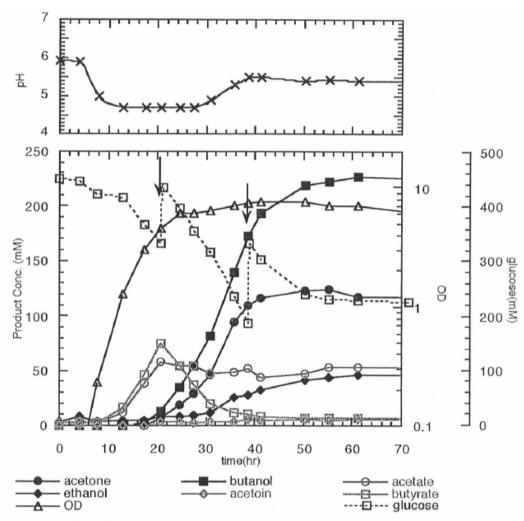


Figure 3.7 Fed-batch fermentation of EG925(pTAAD) controlled at pH 4.7. The arrows indicate time points when glucose was added.

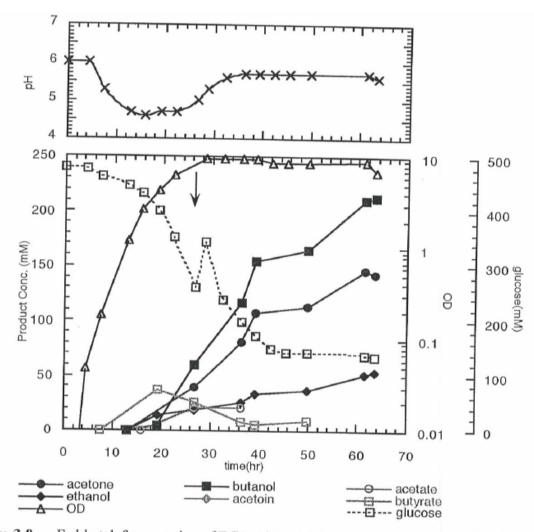
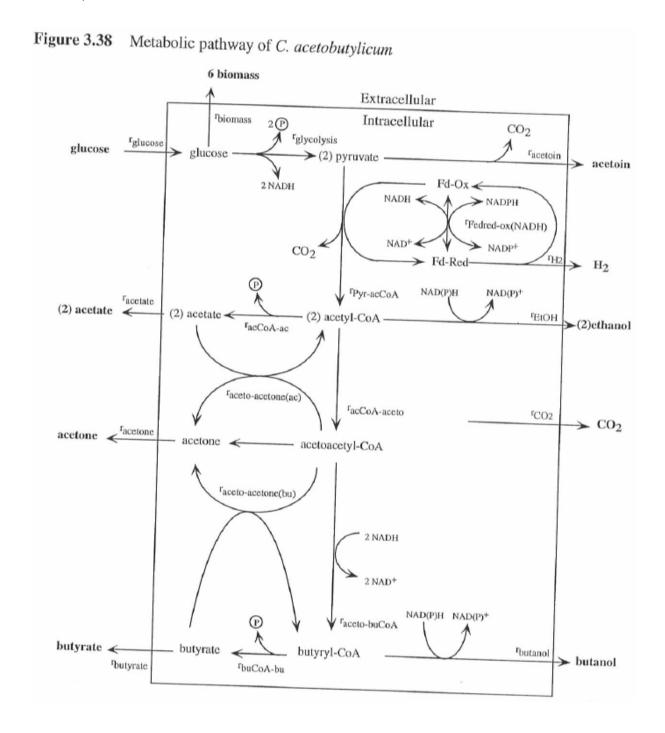



Figure 3.8 Fed-batch fermentation of EG925(pTAAD) controlled at pH 4.7. Clarithromycin at a concentration of 100 μg/ml was used for the slection of the gene deletion mutant. The arrow indicates the time point when glucose was added.

6. Modell von Papoutsakis (1984)

Dies findet sich in der DA im Teil 3 auf den Seiten 14 bis 26 und im Teil 4 (Matlab-Code des Modells).

	The model consists of 20 reactions:	
$\Gamma_{\rm glucose}$:	$glucose_{extracellular} = glucose_{intracellular}$	(1)
$r_{biomass}$:	glucose + 0.873 NADH + x ATP = 6 biomass ⁺	(2)
r _{glycolysis} :	glucose = $2 \text{ pyruvate} + 2 \text{ NADH} + 2 \text{ ATP}$	(3)
r _{Pyr-acCoA} :	pyruvate = $acetyl-CoA + CO_2 + Fd-red^*$	(4)
r _{acetoin} :	pyruvate = $acetoin + 2 CO_2$	(5)
$r_{\rm EtOH}$:	acetyl-CoA + 2 NADH = ethanol	(6)
racCo-ac:	acetyl-CoA = acetate + ATP	(7)
$\Gamma_{acetate}$:	$acetate_{intracellular} = acetate_{extracellular}$	(8)
$\mathbf{r}_{acCoA-aceto}$:	acetyl-CoA = acetoacetyl-CoA	
r _{aceto-acetone(ac)}	: acetoacetyl-CoA + acetate = acetone + CO ₂ + acetyl-CoA	(9)
	: acetoacetyl-CoA + butyrate = acetone + CO_2 + butyryl-CoA	(10)
$r_{acctone}$:	acetone _{intracellular} = acetone _{extracellular}	(11)
$\Gamma_{aceto-buCoa}$:	acetoacetyl-CoA + 2 NADH = butyryl-CoA	(12)
r _{buCoA-bu} :	butyryl-CoA = butyrate + ATP	(13)
r _{butyrate} :	butyrate _{intracellular} = butyrate _{extracellular}	(14)
r _{butanol} ::	butyryl-CoA + 2 NADH = butanol	(15)
r _{CO2} :	$CO_{2intracellular} = CO_{2extracellular}$	(16)
r _{ATP} :	ADP + P = ATP	(17)
r _{H2} ;	$Fd\text{-red}^* = H_2$	(18)
r _{Fdred-ox(NADH)} :	$Fd-red^* = NADH$	(19)
+ Carbon utilized		(20)
	the reduced form of ferredoxin.	

engineo GmbH

The pseudo-steady-state approximation has been validated for the stoichiometric model of C. acetobutylicum (Papoutsakis, 1984) as well as numerous other stoichiometric models (Stephanopoulus, 1993). For C. acetobutylicum, twelve mass balances can be formulated.

Glucose	r _{glucose} - 1/6 r _{biomass} - r _{glycolysis}		
Acetyl-CoA		= 0	(22)
TROUJI-COA	$\Gamma_{\text{Pyr-acCoA}} + \Gamma_{\text{aceto-acetone(ac)}} - \Gamma_{\text{acCoA-aceto}} - \Gamma_{\text{acCoA-aceto}}$	=0	(23)
Acetate	Γ _{acCoA-ac} - Γ _{ac} - Γ _{aceto-acetone(ac)}	0	
Acetoacetyl-CoA		= 0	(24)
	$\Gamma_{acCoA-aceto} = \Gamma_{aceto-buCoA} = \Gamma_{aceto-acetone(ac)} = \Gamma_{aceto-acetone(bu)}$	= 0	(25)
Acetone	$\Gamma_{ m aceto-acetone(ac)} + \Gamma_{ m aceto-acetone(bu)}$ - $\Gamma_{ m acetone}$	=0	32 100
Butyryl-CoA	$\Gamma_{\rm aceto-buCoA} + \Gamma_{\rm aceto-acetone(bu)} - \Gamma_{\rm butanol} - \Gamma_{\rm buCoA-bu}$	-0	(26)
Butyrate		= 0	(27)
	$\Gamma_{\rm buCoA-bu}$ - $\Gamma_{\rm accto-acctone(bu)}$ - $\Gamma_{\rm butyrate}$	= 0	(28)
Feredoxin-red	Γ _{Pyr-acCoA} - Γ _{Fedred-ox(NADH)} - Γ _{H2}		(20)
CO_2		=0	(29)
	$2 r_{\text{acctoin}} + r_{\text{accto-acctone(ac)}} + r_{\text{accto-acctone(bu)}} + r_{\text{pyr-acCoA}} - r_{\text{CO2}}$	= 0	(30)
NADH	$2 r_{\text{glycolysis}} + r_{\text{Fedred-ox(NADH)}} - 2 r_{\text{aceto-buCoA}} - 2 r_{\text{EtOH}} - 2 r_{\text{butanol}}$	=0	(2.1)
Pyruvate	2 r _{glycolysis} - 2 r _{acetoin} - r _{Pyr-acCoA}	- 0	(31)
ATP		=0	(32)
	$2 r_{\text{glycolysis}} + r_{\text{acCoA-ac}} + r_{\text{buCoA-bu}} - r_{\text{ATP}}$	= 0	(33)
			(00)

It was shown by de Kok and Roels (1980) that there is no loss in information if you split the matrix into measured and non measured elements. The new equation is:

$$E_m \cdot r_m + E_c \cdot r_c = 0 \tag{35}$$

where r_m is the m-dimensional measured part of r; r_c is the c-dimensional unmeasured part of r(m is the number of measured conversions and c the number of unmeasured rates: c + m = n). In our system, we have as mentioned above eight measured rates and twelve unmeasured rates.

 $\boldsymbol{r}_{m} = \left[\boldsymbol{r}_{glucose}, \ \boldsymbol{r}_{biomass}, \ \boldsymbol{r}_{acetate}, \boldsymbol{r}_{acetone}, \boldsymbol{r}_{butyrate}, \boldsymbol{r}_{butanol}, \boldsymbol{r}_{acetoin}, \boldsymbol{r}_{EtOH}\right]^{T}$

 $r_{c} = [r_{H2}, \; r_{CO2}, \; r_{glycolysis}, \; r_{pyr\text{-acCoA}}, \; r_{acCoA\text{-aceto}}, \; r_{accto\text{-buCoA}}, \; r_{acCoA\text{-ac}}, \; r_{aceto\text{-acetone(ac)}}, \; r_{aceto\text{-acetone(bu)}}, \\ r_{buCoA\text{-bu}}, \; r_{ATP}]^T$

Datum: 28.04.2011 Dok.-ID: Modellierung C Acetobutylicum 2011 04 29

7. Weiterführende Unterlagen

Nr.	DokID	Beschreibung
1	DA von Lars Blank	

8. Abkürzungen und Definitionen

Ausdruck	Bedeutung
ENG	engineo GmbH