

SIM_SOP_006_Batch-Ecoli_Fermentation

Inhalt	Version	erstellt am	erstellt durch	freigegeben durch
Experimente zu Prozessführungen mit Eschericia coli Simulation einer fedbatch-Fermentation	• 001	• 08.05.15	Frank Eiden	• Fes
	•	•	•	•
	•	•	•	•

ergänzende SOP's:	
mitgeltende Dokumente:	Anleitung BioProzessTrainer

Experiment Ecoli_3: fedbatch-Prozess mit Eschericia coli bei festem Zulaufstrom

Inhalt:

- 1 Aufgabe
- 2 Ziel
- 3 Einstellungen am BioProzessTrainer
- 4 Vorgehensweise
- 5 Auswertung

1 Aufgabe

Durchführung und Auswertung einer fed-batch-Kultivierung mit festem, vorgegebenen Zulaufstrom.

2 Ziel

Vermittlung eines Verständnisses für Limitierungs- und Inhibierungsphänomene bei *fed-batch-*Prozessen, Bestimmung spezifischer Wachstums- und Umsatzraten.

3 Einstellungen am BioProzessTrainer

▶ Wählen Sie aus dem Hauptmenü das Experiment **Ecoli_3**. Hierdurch wird der **BioProzessTrainer** initialisiert. Entnehmen Sie die anfänglichen Messwerte und Zustandsgrößen der Bedienoberfläche des **BioProzessTrainer**.

Die Animpfkonzentration an Biomasse X_R soll bei 0,5 g L⁻¹ liegen.

$$X_I = X_R \frac{V_R + V_I}{V_I} \qquad (1.01)$$

4 Vorgehensweise

- ▶ Führen Sie die Kultivierung **Ecoli_3**, unter Beachtung nachfolgender Hinweise, durch.
- Bereiten Sie ein Datenblatt gemäß Beispiel Ecoli_1 vor.

Ergänzen sie diese um Spalten für

- Volumen V,
- Zulaufstrom Glucose-Zulauf F_{Glc}.

- ▶ Lassen Sie die Kultivierung als *batch* laufen, bis die Glucosekonzentration auf ca. 0,5 gL⁻¹ abgesunken ist. Schätzen Sie diesen Zeitpunkt anhand der von Ihnen entnommenen Proben ab.
- ▶ Starten Sie die Zulaufpumpe für den Glucose-Zulauf F_{Glv} mit 150 mLh⁻¹.

5 Auswertung

- ▶ Werten Sie die gemessenen und berechneten Daten gemäß Experiment Ecoli_1 aus und stellen Sie dies als Funktion der Zeit dar.
- ▶ Bewerten Sie die gewählte Fütterstrategie. Worauf ist Ihrer Meinung nach das Ende des Zellwachstums zurückzuführen (Subtratlimitierung oder Metaboliteninhibierung)?