

SIM_SOP_002_Fed-Batch-Fermentation

Inhalt	Version	erstellt am	erstellt durch	freigegeben durch
Experimente zu Prozessführungen mit Saccharomyces cerevisiae Simulation einer Fed-Batch-Fermentation	• 001	• 29.11.10	Frank Eiden	•
	• 002	• 26.12.10	Frank Eiden	•
	•	•	•	•

ergänzende SOP's:	
mitgeltende Dokumente:	Anleitung BioProzessTrainer

Experiment Hefe_4: fed-batch-Prozess mit Saccharomyces cerevisiae bei festem Zulaufstrom

Inhalt:

- 1 Aufgabe
- 2 Ziel
- 3 Einstellungen am BioProzessTrainer
- 4 Vorgehensweise
- 5 Auswertung

1 Aufgabe

Durchführung und Auswertung einer fed-batch-Kultivierung mit festem, **vorgegebenem** Zulaufstrom.

2 Ziel

Vermittlung eines Verständnisses für Limitierungs- und Inhibierungsphänomene bei fed-batch-Prozessen, Bestimmung spezifischer Wachstums- und Umsatzraten.

3 Einstellungen am BioProzessTrainer

- ▶ Wählen Sie aus dem Hauptmenü das Experiment **Hefe_4**. Hierdurch wird der **BioProzessTrainer** initialisiert. Nach der Initialisierung befinden sich 5 L einer auf 35°C temperierten und mit Sauerstoff gesättigten (pO₂ = 100%) Mediumslösung im Reaktor. Die Anfangskonzentrationen für Glucose und Ethanol betragen:
 - Glucose: 4 g L⁻¹
 - Ethanol: 0 g L⁻¹
 - Glucose im Vorlagebehälter: 60 g L⁻¹

Die Konzentration an Biomasse X_R nach dem Animpfen soll bei 3 g L⁻¹ liegen.

▶ Berechnen Sie die erforderliche Biomassekonzentration X_I im Inokulum (Volumen Inokulum V_I = 200 mL) gemäß Gl. 1.01.

$$X_I = X_R \frac{V_R + V_I}{V_I} \qquad (1.01)$$

4 Vorgehensweise

- Bereiten Sie ein Datenblatt gemäß Muster SIM_SOP_001_Batch-Fermentation vor. Ergänzen Sie dieses um die Spalten für
 - Volumen V
 - Zulaufstrom Glucose F_{Glc}
- Starten Sie das Experiment Hefe_4 durch Aktivieren des Start-Buttons gemäß den Hinweisen auf der DVD.
- ▶ Die Sauerstoffkonzentration im Medium wird bei 60 % Luftsättigung geregelt.
- ▶ Nehmen Sie Proben (zu Biotrockenmasse, Glucose und Ethanol) im Abstand von ca. 30 min (Prozesszeit).
- Führen Sie das Experiment zunächst als batch durch, bis die Glucose (nahezu) verbraucht ist.
- Starten Sie die Zufütterung (fed-batch), indem Sie die Zulaufpumpe für den Glucose-Zulauf F_{Glc} mit 1,0 Lh⁻¹ einschalten.
- ▶ Die fed-batch-Kultur ist beendet, wenn das Arbeitsvolumen von 20 L erreicht und das Substrat vollständig verbraucht ist.
- Tragen Sie die Daten für die Messgröße in die vorbereitete Tabelle ein.
- Zur Wiederholung des Experimentes drücken Sie den Wiederholungs-Button entsprechend den Hinweisen auf der DVD.
- ▶ Zum Beenden des Experimentes **Hefe_4** drücken Sie den Ende-Button entsprechend den Hinweisen der DVD.

5 Auswertung

- ▶ Werten Sie die gemessenen und berechneten Daten gemäß Experiment SIM_SOP_001_Batch-Fermentation aus und stellen Sie diese als Funktion der Laufzeit dar.
- ▶ Vergleichen Sie dabei die differentielle und die integrale Bestimmung.
- Bewerten Sie die gewählte Fütterungsstrategie.
- ▶ Wiederholen Sie den Versuch mit veränderten, von Ihnen begründet gewählten Werten für
 - Startzeitpunkt des Zulaufes
 - Zulaufstrom Glucose F_{Glc}